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We report measurements of the flow above a planar array of synthetic jets, firing
upwards in a spatiotemporally random pattern to create turbulence at an air–
water interface. The flow generated by this randomly actuated synthetic jet array
(RASJA) is turbulent, with a large Reynolds number and a weak secondary (mean)
flow. The turbulence is homogeneous over a large region and has similar isotropy
characteristics to those of grid turbulence. These properties make the RASJA an
ideal facility for studying the behaviour of turbulence at boundaries, which we do by
measuring one-point statistics approaching the air–water interface (via particle image
velocimetry). We explore the effects of different spatiotemporally random driving
patterns, highlighting design conditions relevant to all randomly forced facilities. We
find that the number of jets firing at a given instant, and the distribution of the
duration for which each jet fires, greatly affect the resulting flow. We identify and
study the driving pattern that is optimal given our tank geometry. In this optimal
configuration, the flow is statistically highly repeatable and rapidly reaches steady
state. With increasing distance from the jets, there is a jet merging region followed
by a planar homogeneous region with a power-law decay of turbulent kinetic energy.
In this homogeneous region, we find a Reynolds number of 314 based on the Taylor
microscale. We measure all components of mean flow velocity to be less than 10 %
of the turbulent velocity fluctuation magnitude. The tank width includes roughly 10
integral length scales, and because wall effects persist for one to two integral length
scales, there is sizable core region in which turbulent flow is unaffected by the walls.
We determine the dissipation rate of turbulent kinetic energy via three methods, the
most robust using the velocity structure function. Having a precise value of dissipation
and low mean flow allows us to measure the empirical constant in an existing model of
the Eulerian velocity power spectrum. This model provides a method for determining
the dissipation rate from velocity time series recorded at a single point, even when
Taylor’s frozen turbulence hypothesis does not hold. Because the jet array offers a
high degree of flow control, we can quantify the effects of the mean flow in stirred
tanks by intentionally forcing a mean flow and varying its strength. We demonstrate
this technique with measurements of gas transfer across the free surface, and find
a threshold below which mean flow no longer contributes significantly to the gas
transfer velocity.

1. Introduction
Turbulent transport is a complex and nonlinear process with great relevance to

a variety of scientific and engineering questions. However, the means of generating
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turbulence in a laboratory are limited, most devices falling short of the desired
properties of homogeneity, isotropy, and high Reynolds number. Here we introduce a
new apparatus that improves the performance of one class of turbulence device – the
stirred tank. We do so by employing forcing elements that are randomized in space
and time, via a randomly actuated synthetic jet array (RASJA). This is inspired by
the success of random forcing in turbulent wind tunnels (Makita 1991; Mydlarski &
Warhaft 1996). The apparatus that we describe in this paper has more spatial
and temporal degrees of freedom than either these wind tunnels or the prototype
randomly stirred tank reported in Variano, Bodenschatz & Cowen (2004). These
additional degrees of freedom allow a more thorough exploration of the relationship
between random forcing and turbulence. Thus, in addition to demonstrating and
characterizing this novel and useful apparatus, we wish to answer two fundamental
questions about randomly forced turbulent flow: how sensitive is the flow to the
details of the random forcing scheme, and how does one separate the direct effects of
random forcing from the turbulence this forcing creates? Answers to these question
will aid in evaluating the growing number of randomly forced devices, and help to
ensure that researchers are truly studying turbulence, and not the signatures left by
the turbulence generation scheme. After addressing these questions, we use our novel
device to study several other questions of fluid mechanical importance: the dynamics
of turbulence interacting with a free surface, the spectral form of Eulerian velocity
time series, and the amount by which previous measurements of turbulent diffusion
may have been affected by tank-specific flows.

Stirred tanks create turbulent flows by shearing the fluid in a manner that does
not employ a mean flow. The most common example is the grid-stirred tank (GST)
in which a planar grid oscillates in the grid-normal direction through an otherwise
unforced fluid. A key advantage of creating turbulence with low mean flow is to
reduce the role that advection plays in both mixing and transport. Doing so can
enhance mixing rates and allow turbulence to be studied in isolation.

In practice, no device produces turbulence with truly zero mean flow, as some
secondary flow is always created as a product of the turbulence generation scheme
and/or the interaction of the flow with the boundaries. This small but non-zero mean
flow should not be neglected, as it can have strong effects on mixing and transport.
For example, we show in § 6 that the turbulent flux of gasses across an air–water
interface is highly sensitive to mean flow velocity. Thus one should acknowledge and
understand the presence of the mean flow in stirred tanks, whether using them to
research the physics of turbulence or provide mixing for chemical processes. There is
no commonly accepted standard method for calculating mean flow strength in stirred
tanks, a topic which we address in § 4.2.

We will show in this paper that our new apparatus comfortably out-performs the
commonly used GSTs, both in terms of mean flow strength and Reynolds number.
However, our apparatus should also be viewed in the context of a different, and
complementary, advance in stirred tank technology.

A new generation of stirred tanks has been developed that display homogeneity
(and sometimes isotropy) much better than that of GSTs. These symmetric-forcing
(SF) systems feature synthetic jets, oscillating grids, or rotating disks arranged
symmetrically around some central region (Douady, Couder & Brachet 1991;
Villermaux, Sixou & Gagne 1995; Srdic, Fernando & Montenegro 1996; Shy, Tang &
Fann 1997; Voth, Satyanarayan & Bodenschatz 1998; Liu, Katz & Meneveau 1999;
Birouk, Sarh & Gökalp 2003; Hwang & Eaton 2004; Webster, Brathwaite & Yen
2004). The symmetric forcing elements drive turbulence which, in the ‘central region’
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which is the symmetry point or plane, can be homogeneous and isotropic with low
mean flow.

An important advantage of SF systems is that they can, by virtue of their symmetry,
create flow that is nearly isotropic at the large turbulent scales (within the central
region). This large-scale isotropy fosters small-scale isotropy, and is best achieved by
those systems which use eight synthetic jets or fans at the corners of a box to create
a three-dimensional isotropic region at the box centre (Hwang & Eaton 2004; Birouk
et al. 2003, respectively). The large-scale isotropy of a flow is especially important
given growing evidence that anisotropy persists in the small scales even at high
Reynolds numbers (Pumir & Shraiman 1995; Ouellette et al. 2006). This is in contrast
to Kolmogorov’s prediction of local isotropy at high Reynolds numbers (Kolmogorov
1941, henceforth referred to as K41) and suggests that the large-scale isotropy offered
by many SF systems is an important feature when studying the ‘canonical’ case of
turbulence that is isotropic at both large and small scales. A drawback of SF systems
is that the flow is optimized only in the limited volume which is the central region.
That is, they deliver isotropy at large turbulent scales, but do so for a region smaller
than the tank scale. Furthermore, the need for symmetric forcing makes this technique
inapplicable to studies of turbulence at boundaries.

In contrast, the RASJA is ideal for studying turbulence at boundaries because
it creates turbulence with excellent two-dimensional homogeneity and isotropy, but
does so from a single planar source, i.e. without symmetric forcing. Furthermore, the
forcing elements of the RASJA cover minimal space, which can be convenient for
applications such as creating a turbulent patch in a larger flow. It is important to
note, however, that when a single RASJA forces a tank from only one direction,
three-dimensional large-scale isotropy is unattainable due to turbulent decay (Maxey
1987). Such asymmetry is by definition unavoidable when studying turbulence at a
boundary. When symmetry is not disallowed by the experimental goals, it would be
straightforward to combine the RASJA and SF concepts. In fact, the SF system of
Hwang & Eaton (2004) includes some random forcing, though with fewer degrees of
freedom than the RASJA. By arranging several RASJA arrays in an SF configuration
(e.g. several facing planes) one could create a high-Reynolds-number flow with low
mean flow and large-scale isotropy extending over a region whose size is limited only
by the size of the tank.

The organization of this paper is as follows: in § 2 we describe the geometry
and construction of the RASJA and the tank which it stirs. In § 3, we present
the velocity measurement techniques that will be used to evaluate the RASJA’s
performance. In § 4, we consider the random forcing pattern of the RASJA that
yields the optimal turbulent flow in our apparatus, and describe the resulting velocity
statistics, including the interaction of turbulence with an air–water interface. In § 5 we
explore the relationship between random forcing patterns and the flow they create.
Sections 6 and 7 describe two measurements of fluid mechanics phenomena for which
the RASJA is ideally suited. In § 6 we measure the effect of secondary flow strength
on measurements of the gas transfer velocity across an air–water interface. In § 7
we study the form of the Eulerian frequency spectrum, and measure the unknown
constant in Tennekes’ (1975) model of the inertial-advective range.

2. Apparatus
The stirred turbulence tank is shown in figures 1 and 2. The RASJA sits at the

bottom of a rectangular glass tank that is 80 cm by 80 cm wide and 100 cm high. The
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Figure 1. The randomly actuated synthetic jet array (RASJA) at the bottom of the tank in
which it drives turbulence. The tank width is 80 cm, with 10 cm spacing between the jet nozzles
(white cylinders on tank floor).

tank is typically filled to 91.5 cm with water, and the free surface defines z = 0. The
RASJA is an array of 64 jets arranged in an 8 by 8 grid on the tank floor. The grid has
a spacing of 10 cm and obeys reflective symmetry, which was found by Fernando &
DeSilva (1993) to reduce secondary flows in GSTs. The jets can be pointed upwards
or sideways, though performance is better when upward pointing (see § 5.5). Each
jet, when turned on, has a constant exit velocity UJ =60 cm s−1 through a cylindrical
nozzle of diameter 2.19 cm, giving a jet Reynolds number of 14000. We do not
vary the tank Reynolds number by changing the jet Reynolds number but rather
by changing the parameters of the spatiotemporal jet driving pattern or the vertical
location of the test section.
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Figure 2. Schematic of the stirred turbulence tank, driven by the RASJA at the base.

Each jet is driven by a submerged centrifugal pump, and supplied by fluid through
the pump’s intake 7 cm beneath the jet nozzle. This intake represents a suction source
nearly colocated with the jet, and of equal strength. Because the suction and the jet
are always turned on simultaneously, there is zero net mass flux through a control
volume surrounding a pump, making each jet a synthetic jet.

Coordinate axes are such that gravity acts in the −z-direction. The tank is symmetric
in every (x, y)-plane, and fundamentally asymmetric in the z-direction. Our z-axis
is equivalent to what is typically labelled x in wind-tunnel turbulence studies. The
synthetic jet nozzles lie in the (x, y)-plane at depth z = −zc with respect to the free
surface at z = 0. In the GST literature, zc is called the “cover”. The jet intakes are
7 cm beneath the jet nozzles, and the tank floor is 4.5 cm beneath that. Typically
zc = 80 cm, chosen to achieve symmetry with the tank width and breadth. To preserve
this symmetry, we avoid flow disturbances by keeping all plumbing and fittings in
the region below the jet nozzles, i.e. z < −80 cm. The height of any point above the
RASJA itself is defined as Z ≡ z+zc. Elsewhere in this paper, the coordinate system is
referred to with indicial notation, i.e. x1 = x, x2 = y, and x3 = z. Velocity components
are defined such that U is aligned with x, V is aligned with y, and W is aligned with,
but opposite in direction to, z. That is, positive W is upward flow. Velocities are also
referred to with indices, such that U1 = U, U2 = V , and U3 = W .

Each synthetic jet can be turned on independently from the others, always at
UJ = 60 cm s−1. The pumps driving each of the synthetic jets are Rule 360 g.p.h.
(0.38 l s−1) 12 V DC bilge pumps. Flow rates can be altered by limiting the operating
voltage, but deviations from the intended 12 V operation create increased wear on
the pump motor brushes and shorten pump life. Under normal operation we expect
12000 hours of tank operation before pumps must be replaced.

Pumps are controlled by solid-state relays which are triggered by TTL signals from
a Measurement Computing 96 channel digital output card (PCI-DIO96H), controlled
by MATLAB at an output frequency of 10 Hz. Each relay, when triggered, closes
a circuit supplying 12 V at 2.4 A to a specific pump. If all 64 pumps are turned on
simultaneously, the power supply must be able to provide 154 A at 12 V. However, our
optimal spatiotemporal jet driving pattern (see § 4) uses only a fraction of the pumps
at a given time; thus this facility could be operated with a much smaller power supply.
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Our relay system is a custom design and fabrication, though a commercially available
equivalent is Measurement Computing SSR-RACK48/DST plus SSR-4-ODC-05.

3. Measurement techniques
We characterize the performance of the RASJA based on large-scale and small-

scale (one- and two-point, respectively) velocity statistics. Velocities reported herein
are measured by acoustic Doppler velocimetry (ADV) or particle image velocimetry
(PIV) methods which have complementary strengths. We compare measurements from
PIV and ADV whenever possible, and find they give statistically identical results for
all comparable quantities. Additional verification of key statistics was performed with
a laser Doppler velocimeter (LDV). Results from ADV and LDV confirm that V

behaves exactly as U to within statistical uncertainty, as expected from symmetry.
Thus the following analysis focuses on the U and W velocity components.

3.1. Statistical methods

We decompose the velocity field U(x, t) into its temporal mean U(x) and the
fluctuations about this mean, u′(x, t). Here, an overbar denotes the time-average
linear operator, and boldface type indicates vector quantities. If the velocity field is
statistically stationary, then the time-average velocity field U(x) is a good estimator
of the expectation value of velocity, 〈U(x)〉. We quantify the magnitude of turbulent

velocity fluctuations as urms(x) ≡
√

(u′(x))2.

Statistics reported here are calculated from velocity data subsampled at 1 Hz to
ensure independence of samples. The one exception is Eulerian frequency spectra,
which utilize high-frequency ADV time series.

Confidence intervals (CIs) are computed directly from individual data records using
the Bayesian bootstrap method (Efron & Tibshirani 1993). The half-width of the 95 %
CI for quantity a is δa. The CI is also calculated in a frequentist manner, the 95.4 %CI
being the region within ±2σ where σ is the standard deviation of the quantity of
interest across an ensemble of independent records. The two CIs are similar, but we
prefer to report the bootstrap CI because it represents a more economical use of the
data. Additionally, the bootstrap method does not necessitate any assumption about
the underlying probability density function of the data.

We verify the repeatability of reported statistics by checking whether independent
velocity records measured under identical experimental conditions give values that
are identical to within the 95 % CI. In addition to repeatability, we would also
like our statistics to be converged. Statistics are converged when they are based on
long enough data records to accurately represent the flow properties. Repeatability
is a necessary condition for convergence. We quantify statistical convergence for
quantity a with a non-dimensionalized measurement uncertainty a/δa. We consider
our measurement of a to be converged when δa/a � 0.05. When repeatability and
statistical convergence have been satisfied, doubling the record length will not yield a
statistically significant difference in the result.

3.2. Measurements by acoustic Doppler velocimetry

Single-point measurements are made with a Nortek Vectrino ADV (with optional
‘plus’ firmware). The sample volume is cylindrical, with diameter 6 mm and height 9.1
mm, inside which the spatial average velocity is recorded at a 50 Hz data rate. This
data rate corresponds to averaging velocity measurements (obtained at an internal
sample rate of 1754 Hz) over a 20 ms interval. For comparison, the smallest scales of
turbulence, computed from the dissipation rate ε reported in § 4.5 and the kinematic
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viscosity ν, are the Kolmogorov time scale τη ≡ (ν/ε)1/2 ≈ 44 ms and the Kolmogorov
length scale η ≡ (ν3/ε)1/4 ≈ 0.2 mm.

By virtue of probe geometry, ADV measurements show enhanced precision in the
axial direction (ẑ in the ADV coordinate system) compared to the radial directions
(x̂ and ŷ). Furthermore, the ADV both disrupts and induces flows (Snyder & Castro
1999). Because of these effects, we collect data with two different ADV orientations.
When measuring properties of W , we align ẑ (ADV coordinates) with the −z-direction
(tank coordinates). When measuring properties of U , we align ẑ with the −x-direction.

3.3. Measurements by particle image velocimetry

Digital image pairs for PIV are collected by illuminating passive tracer particles with
a laser light sheet. Images are recorded with Uniq Vision 12-bit full-frame-transfer
CCD cameras (UP-680CL-12B), with a 494 × 659 array of 9.9 μm × 9.9 μm pixels,
minimum frame transfer time <60 μs and a maximum frame rate of 60 Hz at full
resolution. Illumination is via a two-channel frequency-doubled YAG laser (Spectra
Physics PIV 300-10). Each channel’s flashlamp and Q-switch, plus the delay between
the firing of channel one and two (�t), are controlled by a digital delay generator
(BNC 500A). Laser and camera timing are synchronized with signals controlled in
MATLAB via a National Instruments analog output card (PCI-6711).

Tracer particles are hollow glass spheres (Potters Industries Sphericel #110P8) with
a mean diameter (Dp) of 11 microns and median specific gravity (S) of 1.1. Particle
concentration is <1 p.p.m., thus the particles do not have an appreciabe impact on the
fluid properties. These particles passively follow the flow, as indicated by their Stokes
number St ≡ τR/τη = 0.0159, where τR ≡ (S − 1)D2

p/18ν is the particle response time
to acceleration. Because St � 1, the particles follow the flow essentially passively.

Vector velocities are determined using a dynamic central difference scheme over the
image pair separation time �t which is adjusted to optimize the measurements to the
observed velocity range U ≈ [−25, 25] cm s−1. Each velocity is found by normalized
cross-correlation of small regions of the image pair (Sveen & Cowen 2004). These
small regions are size N × N pixels and known as subwindows. PIV provides a filtered
version of the true velocity field, the filter being a box-type filter with box size equal
to the subwindow size.

Image pairs are interrogated for velocity vectors at many points, which are arranged
along a grid of mesh spacing N/2 (i.e. 50 % overlap). Interrogation is performed
dynamically in a series of iterations, each with a higher resolution than the previous
iteration. That is, each PIV velocity field is used as an estimator for another iteration
which uses a smaller subwindow. After each iteration, we identify and remove invalid
vectors. These include unconverged vectors, for which the normalized cross-correlation
does not give a robust indication of particle displacement, and unphysical vectors,
which differ from the local spatial median by more than a dynamically determined
threshold (Liao & Cowen 2005; Variano 2007). The total number of invalid vectors
is less than 10 %, and can be left as data gaps or interpolated (e.g. via Delauney
triangularization). We use interpolation to fill data gaps for all except the final
iteration. When performing statistical calculations in this paper, we use the final
iteration, and prefer working with data gaps because any interpolation scheme
represents a smoothing that may affect the results.

The flow we measure has high levels of shear, which requires additional effort
in PIV processing. First, shear requires us to keep �t small, which means that
particle displacements are restricted to a limited number of pixels. As a result,
velocity estimation to subpixel accuracy is extremely important for this dataset.
For this, we employ the spectral continuous subwindow shifting method of Liao &
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large-area
Set descriptor standard close-up close-up close-up (via MCPIV)
Resolution medium low medium high high

Image width (cm in x) 5.0 2.6 2.6 2.6 40
Image height (cm in z) 3.8 1.9 1.9 1.9 11.7
Subwindow width (pixels) 48 48 32 24 16
Subwindow width (cm) 0.365 0.226 0.150 0.113 0.4
Grid spacing (cm) 0.182 0.113 0.075 0.056 0.2
�t (ms) 6 3 3 3 5

Table 1. PIV parameters. Subwindows are square. For comparison, note that the relevant
flow scales are integral length scale LL = 7.5 cm, Kolmogorov length scale η =0.0209 cm and
Kolmogorov time scale τη = 0.044 s. For the close-up dataset, we show the increasing resolution
with successive iterations.

Cowen (2005), as they have shown the method to be one of the most accurate and
computationally efficient. Second, in early iterations with large subwindow sizes, shear
leads to inhomogeneous flow within the subwindows. The resulting ‘shear error’ is
mitigated by artificially expanding the imaged size of tracer particles by applying a
blurring filter to the images.

The PIV datasets included in this paper are taken with one of three configurations,
the details of which are given in table 1. The standard set is used to measure one-
point statistics and velocity profiles, the close-up sets are optimized to measure the
dissipation rate, and the large-area set helps visualize the tank-scale flow features
and also measure the integral length scales. The large-area set is taken using
multiple-camera PIV (MCPIV) to achieve a large spatial coverage without sacrificing
resolution. In MCPIV, three cameras simultaneously image adjacent (and slightly
overlapping) areas of the laser light sheet. Data are then interpolated onto a master
grid, yielding a dataset that is ideal for calculating spatial statistics without appealing
to Taylor’s frozen turbulence hypothesis (Variano 2007). An example of the output
from our PIV analysis is shown in figure 3.

A notable advantage of PIV is that the two velocity components it resolves have
equal noise structure, in contrast to the ADV which has different noise levels in each
of the three velocity components. Furthermore, in PIV the velocity components are
measured orthogonally so that the noise in each is independent from the other. This
results in improved estimates of covariance terms (e.g. the Reynolds shear stresses
〈uiuj 〉). The ADV, in contrast, exhibits an anisotropic noise structure, and this noise
structure is correlated within the (x, z)- and (y, z)-planes. Thus additional care must
be taken in error analysis of ADV data.

4. Performance of optimal jet driving pattern
Here we discuss the performance of the tank under the random jet driving pattern

that provides the best homogeneity and lowest mean flow (additional details about
this pattern are presented in § 5.4.2 and figure 12). In this as well as other drive
patterns, measurements throughout the tank reveal three large-scale flow regions.
With increasing distance from the RASJA, these are the jet-merging region, the
homogeneous region, and the surface-influenced region (see figure 2).

From z = −80 to z = −20 cm is the jet-merging region, in which the direct effects
of each jet are noticeable, and thus statistical quantities vary in x and y. Starting
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Figure 3. Example velocity data from PIV measurements. (a) A subset of the U velocity
time series. (b) An instantaneous vector field from the close-up set (medium resolution). For
scale, we show a horizontal vector whose length corresponds exactly to 5 cm s−1 in the lower
right-hand corner of the vector field. (c) The probability density function of the U velocity.
The success of the subpixel fitting scheme is evident in the small size of the periodic ‘peaks’
corresponding to integer pixel displacements.

at z = −20 cm (a distance from the RASJA equal to 6 times the spacing between
jets) velocity statistics are invariant to rotation or translation in the (x, y)-plane. We
call this the homogeneous region, and its extent is limited only by the walls and the
free surface. In this region, urms and wrms decrease monotonically with increasing z.
The surface-influenced region begins at z = −15 cm. In this region, a redistribution of
turbulent energy towards the surface-parallel directions leads to significant anisotropy
(Hunt & Graham 1978). This surface-influenced region is considered further in § 4.9,
and in § 4.1 to § 4.8 we focus on the flow in the homogeneous region, reporting
measurements at z = −20 cm unless otherwise indicated.

On the free surface, signatures of turbulent motion are seen as upwellings (or
‘splats’) and small surface-attached vortices. Qualitative observations of these features
show little evidence of a direct connection between the specific state of the RASJA
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Quantity Value 95% CI

U 0.26 cm s−1 [0.11 0.42]
W 0.10 cm s−1 [−0.11 0.30]
urms 3.91 cm s−1 [3.77 4.05]
wrms 4.98 cm s−1 [4.79 5.16]
wrms/urms 1.27 [1.20 1.34]
Skewness (u′) 0.00 [−0.06 0.05]
Skewness (w′) 1.04 [1.00 1.08]
Kurtosis (u′) 3.96 [3.83 4.09]
Kurtosis (w′) 4.43 [4.28 4.60]
M1 = U/urms 0.07 [0.03 0.10]
M3 = W/wrms 0.02 [−0.02 0.06]
LL 7.57 cm [7.43 7.72]
LT 6.36 cm [6.22 6.50]
T 2.11 s [2.09 2.13]
ε 5.20 cm2 s−3 [3.43 6.55]
η 0.021 cm [0.020 0.023]
ReT 3250 [3120 3390]
Rλ 314 [280 386]

Table 2. Flow statistics in the RASJA turbulence tank when jets are driven according to
the optimal random firing pattern. Measurements are far from the walls, jet array, and free
surface. Integral length scales LL and LT , dissipation ε, and Reynolds numbers are measured
over the horizontal region (x = [20, 60], y = 40, z = −20 cm). All other values are from point
measurements at the representative location (x = 60, y = 40, z = −20 cm). Velocity skewness
and kurtosis and integral time scale T are reported from ADV data, while all other values are
reported from PIV measurements.

and the turbulent events on the surface. That is, when a jet fires, its signature cannot
be seen on the surface (even if the jet’s neighbours are not firing). This observation
lends support to our assertion that by the time they reach mid-tank, individual jets
have merged with the turbulent field and lost the signature of their creation. This
picture of jet merging is further supported by the decomposition in § 5.3.1. Finally, we
can further support the idea of jet merging by draining the tank while the RASJA is
on. When the cover reaches zc ≈ 40 cm the structure of free surface motions changes
markedly, and the signature of individual jets firing becomes evident.

The jet firing pattern discussed in this section is one in which eight of the jets are
firing on average, each for 3 s on average, but in an asynchronous fashion so that
the set of firing jets changes every 0.375 s on average. This pattern is described in
more detail in figure 12 and § 5.4.2, in the context of our systematic study of driving
patterns. Measurements of the flow created by this pattern are summarized in table 2,
with details in the following sections.

4.1. Fluctuating velocities

The RMS fluctuating velocity urms, calculated from a velocity time series at a single
point, is taken as a measure of the intensity of turbulence. Because this quantity
includes variance from all sources, turbulent and otherwise, we must consider that the
random tank forcing, in and of itself, may obscure the turbulent signal in urms. We
confirm that urms is an appropriate measure of the turbulent intensity by performing
the spectral analysis discussed in § 5.3. Our tests of statistical convergence show that
values of urms converge to the 5 % level in 20 minutes and to the 1 % level in 9 hours
when computed from 1 Hz velocity samples.
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Figure 4. Velocity profiles at z = −20 cm, + indicates turbulent fluctuating velocities urms and
wrms and × indicates temporal mean velocities U and W . The region from x ≈ 15 to x ≈ 65 cm
shows homogeneity in urms and wrms. Homogeneity in y can be seen here as well, since the data
from x = 0 to 40 cm are three overlaid measurements from y = 30, 35, and 40 cm. Data from
x = 40 to 80 cm are two overlaid measurements, both at y = 40 cm. These five measurements,
all from different initial conditions, demonstrate the high degree of run to run repeatability.
Tank walls at x = 0 and x = 80 cm induce the mean flow visible in the profile of W and cause
a departure from homogeneity in the near-wall region.

Examining the horizontal spatial dependence of urms, we observe a large region in
which it is homogeneous in x and y (to within the 95 % CI). The composite profile
of urms(x) in figure 4 shows this. The departure from homogeneity in the near-wall
region is due to the expected intercomponent transfer of turbulence at a boundary
(Hunt & Graham 1978). This wall effect does not extend more than 15 cm (≈ 2LL,
see § 4.4), therefore leaving a central region of 50 cm which is unaffected by the tank
walls.

Anisotropy in the turbulent intensity (wrms/urms 	= 1) is common for tanks without
symmetric forcing, and for some SF systems as well (Voth et al. 2002). For GSTs,
anisotropies are reported in the range wrms/urms ∈ [1.1, 1.4] (McDougall 1979;
Hopfinger & Toly 1976; DeSilva & Fernando 1994). We measure a value of 1.27,
with a 95 % confidence interval of [1.20, 1.34]. Mydlarski & Warfhaft (1996) found
that active forcing in a wind tunnel increases anisotropy compared to the traditional
passive grid wind tunnel, but in our apparatus we see no such anisotropy increase
relative to GSTs, despite the RASJA’s active forcing.

According to K41 theory, this anisotropy should not be present at smaller scales
if the Reynolds number is sufficiently high. However, recent evidence questions
this prediction (Pumir & Shraiman 1995; Ouellette et al. 2006). Our measurements
of small-scale statistics, specifically the structure functions (defined in § 4.5), can
neither confirm or rule out the presence of small-scale isotropy. Transverse and
longitudinal structure functions, calculated in the inertial and dissipation subranges,
agree to within statistical uncertainty, but the CIs are large enough to obscure any



12 E. A. Variano and E. A. Cowen

anisotropy less than ≈1.4. For example, in the inertial subrange DLL/r2/3 ∈ [5, 7] and
DNN/r2/3 ∈ [6, 8.5] cm4/3 s−2.

4.2. Mean velocities

A repeatable non-zero mean flow exists in this facility, as evidenced by the horizontal
structure in U seen in figure 4. The most notable feature is an upward flow near the
tank centre and a return flow at the walls. We expect that this is caused by viscous
drag at the tank walls. Because the probability distribution of W exhibits positive
skewness, upward velocities will be larger on average than downward velocities, and
thus will generate a stronger drag force than downward velocities, making the wall
regions relatively more attractive for downflow.

To compare the strength of mean flow in the RASJA to that of other stirred tanks,
we use the ratio M ≡ U/urms. Several considerations are important when comparing
M across facilities. First, most GSTs reported in the literature show that M is largest
in the asymmetric direction (e.g. M3 in our apparatus), thus the performance of a
facility may be misjudged by examining only one velocity component (Variano et al.
2004). Second, continuity implies that a non-zero mean flow at location x must be
balanced by a mean return flow elsewhere in the tank. As a result, the tank-averaged
mean flow will always be zero. Thus if U(x) is averaged over space, the result will
tend to zero, resulting in overly optimistic values of M . For example, spatiotemporal
averaging applied to our data from x = 40 to x = 80 cm would give M1 = 0.00. Thus
one must take care to avoid spatial averaging, or do so using non-negative quantities.
Herein we use M as a single-point quantity, which we calculate at many locations
before reporting a representative value.

When collecting values of M from other facilities reported in the literature, we do
not have the luxury of raw data, so we must infer values from those statistics which
are reported. When ratios are reported directly, some may have been calculated in
the overly optimistic ways discussed above. The literature survey by Variano et al.
(2004) finds values of M for GSTs which are typically about 0.25 with a best case
value of 0.10 in a single coordinate direction. In the worst cases, Mi can exceed 1. We
ascribe this poor performance to the tendency of GSTs to drift out of alignment and
the deterministic driving pattern that allows mean flows to persist once established.
Most symmetric forcing systems perform better than GSTs, with Mi ≈ 0.10, though
if specific attention is not paid to minimizing Mi , symmetric forcing can still yield
large mean flows (Liu et al. 1999; Webster et al. 2004). The facility of Hwang &
Eaton (2004) gives the best values in any study to date, with M1 = 0.02 and M2 = 0.10
(note that their apparatus shows symmetry in all three coordinate directions). In our
apparatus, M is quite low, as seen in table 2, namely M2 ≈ M1 = 0.07 and M3 = 0.02.
It is encouraging that we find M to be smallest in the asymmetric direction, which is
the opposite of the trend noted above. In § 6, we consider the question of how small
a mean flow must be before it can be considered negligible.

A different method of quantifying mean flow strength, well-suited for studies
of transport processes, is a comparison of the mean flow kinetic energy ( 1

2
U · U)

to the average turbulent kinetic energy q2 ≡ ( 1
2
u′ · u′) = 1

2
(u2

rms + v2
rms + w2

rms). This
ratio should be calculated everywhere in the region relevant to transport, and then
averaged over this region. An approximation to this value can be obtained from

PIV data by assuming symmetry in the (x, y)-plane: M∗ ≡ (2U
2
+ W

2
)/(2u2

rms + w2
rms).

Calculating this and averaging over the representative region x ∈ [40, 80], y =
40, z ∈ [−20, −15] cm, we find M∗ = 0.0105.
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We find that the mean velocity converges to the 5 % level in 25 minutes when
computed from 1 Hz velocity samples. Such an average includes many samples of the
highly variable temporary mean flows that are intentionally driven by the jet firing
pattern, which have a time scale of roughly 0.375 s.

4.3. Higher-order statistics

Higher-order moments of the fluctuating velocity time series at a point (u′(x, t))
reveal the transport and intermittency properties of the turbulent flow. Compared
to the mean and standard deviation, these moments take longer to reach statistical
convergence; the highest moment we compute is the kurtosis, which requires 6 hours
to converge to the 5 % level when computed from 1 Hz velocity samples. The most
notable result from these statistics, seen in table 2, is the positive skewness of W ,
indicating that large upward velocities are more common than large downward ones.
This is an expected feature of spatially decaying turbulence, being a signature of the
turbulent flux of turbulent kinetic energy (Maxey 1987). A similar skewness is observed
in wind-tunnel grid turbulence and increases with Reynolds number (Mydlarski &
Warhaft 1996).

4.4. Integral scales

The integral length scale Lij,k is the integral of the spatial autocorrelation function
aij,k(r). This is the normalized autocovariance of velocity time series at two points (u′

i

and u′
j ) which are separated by a distance r aligned with the coordinate direction xk .

The autocorrelation function is computed from our PIV data as:

aij,k(r) =
u′

i

(
xc − 1

2
rk

)
u′

j

(
xc + 1

2
rk

)
(
u′

i

(
xc − 1

2
rk

)2
u′

j

(
xc + 1

2
rk

)2)1/2
(4.1)

for each r ∈ [0, L], where L is the spatial extent of the measurement. Following
from this,

Lij,k ≡
∫ L

0

aij,k(r) dr.

For simplicity of notation we define L =LL ≡ L11,1 and a(r) ≡ a11,1(r). To accurately
resolve a(r) and L one must measure over a region L � L. If L is not large
enough to include the largest motions, then the resulting calculation of L will be
biased. Unfortunately, there is a lack of theory to help us predict the necessary L
and correct any bias caused by using too small an L. This is because the nature
of low-wavenumber (energy-containing) turbulent motions is still poorly understood
(Davidson 2004). Such a bias is easily avoided when Taylor’s frozen turbulence
hypothesis allows time series measured at a single point to be translated into spatially
distributed velocity samples. In such cases, one can extend the spatial extent of the
velocity record simply by measuring for a longer time period. Taylor’s hypothesis does
not hold in tanks with low mean flow, thus spatial measurements must be captured
directly by PIV or by a probe that rapidly traverses the tank (Thompson & Turner
1975; Brumley & Jirka 1987). We employ the former method, and ensure that L is
fully resolved by an examination of the autocorrelation curve. We expect that at large
separation r , the autocorrelation curve a(r) will be consistently zero. If a flat region of
a(r) = 0 is observed as r → L, our measurement region is deemed sufficiently large
to resolve L. We observe such a region, as shown in figure 5, but note that this is only
barely achieved, despite the fact that we measure quite a large area (L = 40 cm). This



14 E. A. Variano and E. A. Cowen

0 5 10 15 20 25 30 35 40
–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

r (cm)

a (r)

Figure 5. Spatial autocorrelation function of horizontal fluctuating velocity, bounded by the
95% confidence interval (dashed lines). The separation vector r is aligned with x and centred
on x = 40, y = 40, z = −20 cm. Zero values of a(r) for large r indicates that the measurement
area exceeds the average size of turbulent motions.

has two implications. First, it emphasizes that accurate calculations of integral length
scales require a large measurement region (L > ≈ 3L), which in turn demands a large
homogeneous region. Second, it highlights the need when L is small to calculate a(r)
as described in equation (4.1) above. This is because the more common method of
obtaining the autocorrelation from the Fourier transform of each velocity subrecord
(with cyclic assumption) can give wildly inaccurate results when subrecords are too
short.

We compute the integral length scales LL ≡ L11,1 = 7.57 and LT ≡ L33,1 = 6.36 cm.
The 95 % CI bounds shown in table 2 are computed via bootstrap from integrals of
replicants of a(r). As with the velocity variance, velocity autocovariances converge to
the 95 % level within 25 minutes, and thus a(r) does as well.

The theory of three-dimensional homogeneous and isotropic turbulence predicts
LL/LT =2, assuming isotropy of both the small scales and the energy-containing
motions (Pope 2000). In our flow, in which the latter assumption does not apply, we
measure LL/LT = 1.19 with a 95 % CI of [1.16, 1.22]. In a related measurement we
calculate the integral length scales L∗

L ≡ L33,3 and L∗
T ≡ L11,3 in which the separation

vector r is aligned with the anisotropic flow direction (z). These length scales are
more comparable to those measured in wind-tunnel studies using a single probe and
Taylor’s hypothesis. Here we find L∗

L/L∗
T = 2.14 with a 95 % CI of [1.86, 2.43]. The

fact that the ratios LL/LT and L∗
L/L∗

T bound the predicted value, but fall on opposite
sides, is probably due to the anisotropy and inhomogeneity in this flow.

Integral time scales are computed similarly to the length scales, giving T = 2.11 s
with a CI of [2.09, 2.13]. Examination of the temporal autocorrelation curve shows
that correlations become zero by roughly 5T, similar to our result of 3L for spatial
autocorrelation.
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Method ε (cm2 s−3) 95% CI 95% CI

Structure function fit 5.20 3.43 6.55
Spectral fit 4.11 3.25 7.41
Scaling law 10 N/A N/A

Table 3. Dissipation rate from three methods. The third method is expected to give the result
to within an O(1) constant.

4.5. Dissipation rate

We measure the dissipation rate of turbulent kinetic energy in three ways: scaling law,
spectral fit, and structure function fit. While each method includes some assumptions
about the flow properties, the results from the three agree quite well, as seen in table 3.
A fourth method, the direct calculation from the definition ε ≡ 2ν〈SijSij〉, in which
the gradients in Sij ≡ 1

2
(∂u′

i/∂xj + ∂u′
j /∂xi) are calculated directly from PIV velocity

fields, was also attempted. While this method is quite promising, our initial efforts
revealed complications that require further consideration. Specifically, as we refine
the PIV resolution so that central differences accurately represent the true velocity
gradients, the signal to noise ratio of velocity differences becomes prohibitively small.
Because dissipation is a quantity of central importance in turbulence, and PIV a
growing technique, further research on sidestepping these problems would be useful.
Some promising ideas are using coupled PIV–PTV (Cowen & Monismith 1997),
employing a Smagorinsky model to predict subgrid processes (Hwang & Eaton 2004),
or resolving unambiguously the larger scales of the dissipation range and fitting to a
model dissipation-range spectrum.

Our measurement of the dissipation rate ε begins with the order-of-magnitude
estimate ε = A(2/3q2)3/2/LL. Taking A to be 1, we find ε = 10 cm2 s−3. Comparison
with other values in table 3 indicates that in this flow, A is probably closer to 0.5, in
agreement with the results of Pearson, Krogstad & van de Water (2002).

Our preferred method of calculating ε is based on the structure function in
the inertial subrange. Structure functions can be accurately resolved by PIV in
a straightforward manner, despite the limited spatial extent and data gaps that
present difficulties when calculating quantities in wavenumber space. The second-
order longitudinal structure function is defined as

DLL(xc, r) ≡ 〈(Ui(xc − r/2) − Ui(xc + r/2))2〉, (4.2)

where r is aligned with the velocity component Ui . The structure function for xc =
{x = 40, y = 40, z = −20} cm is shown in figure 6, compensated to give ε assuming the
scaling proposed in K41. That is, for high-Reynolds-number turbulence, in the inertial
subrange, K41 predicts DLL = C2(εr)

2/3. Our data agree with this prediction, as shown
by the presence of a plateau in figure 6, from which we compute ε = 5.20 cm2 s−3

with a 95 % CI of [3.43, 6.55]. The confidence interval is based on the bootstrap
combined with the uncertainty in C2, which we take to be in the range [2.0, 2.2] (Pope
2000).

We also determine the dissipation rate from the one-dimensional velocity power
spectrum. According to K41, the power spectrum E(κ) exhibits a power-law behaviour
in the inertial subrange: E(κ) = Cε2/3κ−5/3, where C ≈ 1.5 is the Kolmogorov
constant. The longitudinal one-dimensional power spectrum in the horizontal direction
E11(κ1) is expected to follow a similar power law in the inertial subrange, namely
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Figure 6. Second-order longitudinal velocity structure function, compensated with separation
distance r and the constant C2 = 2.0. This is used to calculate the dissipation rate ε. Dashed
lines give the 95 % confidence interval. The Kolmogorov length scale η used to normalize r is
determined recursively using the dissipation rate.

E11(κ1) = C ′ε2/3κ
−5/3
1 (K41; Pope 2000). This longitudinal one-dimensional spectrum,

as computed from our data, is shown in figure 7. It shows a power-law decay range,
as well as an exponentially decaying dissipation range; the transition between the two
appears near κ1η ≈ 0.1 as expected from the universal spectrum (Pope 2000). In the
inertial subrange, the following equality should be true:

E11(κ1) =
C ′

C
E(κ), (4.3)

in which C ′/C = 1
2

18
55

, and the 1
2

arises from our normalization convention (Pope 2000).

Using our measured values of L and q2 as inputs to Pope’s model spectrum for E(κ),
we can determine the value of ε that provides the best match between the model and
our measurements. Figure 7 shows that our measurements match models in the range
ε = 3 to 7 cm2 s−3, and a fit to the compensated curve gives ε =4.11 cm2 s−3 with a
95 % CI of [3.25, 7.41].

We emphasize that particular care must be taken when determining ε in this
manner, because it is difficult to accurately measure E11(κ1) from discretely sampled
data covering a limited spatial region. Turbulent motions that are too large or small
to be resolved by the data will be ‘aliased’ into the subset of resolved wavenumbers.
If there is a non-negligible amount of energy in these aliased wavenumbers, then
the resolved spectrum will be inaccurate. Thus to accurately measure E11(κ1) and ε,
velocity records must cover a large spatial extent with fine spatial resolution. The data
used here cover 40 cm (≈ 5.5L) at 0.4 cm resolution, achieved by the MCPIV technique
described in § 3.3. We determine that this dataset is capable of providing accurate
spectra (i.e. with minimal aliasing) because it accurately resolves the autocorrelation
curve as discussed in § 4.4.
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Figure 7. Longitudinal (·) and transverse (×) one-dimensional power spectra at z = −20 cm,
computed from instantaneous spatial velocity records from x ∈ [20, 60] cm. The 95 %
confidence interval is shown for the longitudinal spectra by additional symbols (·) above
and below the curve. The noise floor is evident at the highest wavenumbers. Model spectra, as
described in the text, are fitted to different regions of the longitudinal spectrum.

4.6. Reynolds number

Anisotropy in the velocity components leads us to select the following single velocity
to be representative of all three components:

U ≡
√

2

3
q2 =

√
1

3
u′ · u′ =

√
1

3

(
2u2

rms + w2
rms

)
.

From this velocity scale and the dissipation rate, the Taylor-microscale Reynolds
number can be calculated as Rλ = U2

√
15/νε, where ν is the kinematic viscosity.

We find Rλ = 314 with a 95 % CI of [280, 386]. The turbulence Reynolds number
defined by Pope (2000) is ReT ≡ UL/ν, where L =LL. We find ReT = 3220 with a
95 % CI of [3100, 3350]. The standard Reynolds number used in GSTs is the grid
Reynolds number, ReG, which is defined in terms of the grid’s operating parameters.
Hopfinger & Toly (1976) offer a parameterization of U and L in terms of these
operating parameters, with which one can obtain the relationship ReG = 2ReT . The
highest ReG reported to date is 974, from McKenna & McGillis (2004). We are happy
to report that the RASJA provides a much higher ReG, namely 6440, nearly 7 times
as large, and does so with lower mean flow and similar power consumption. This
Reynolds number is large enough to justify our use of the predictions of K41 theory
used to find dissipation above (Mydlarski & Warhaft 1996).

4.7. Development of steady-state turbulence

While statistical convergence takes minutes to hours, the flow in the RASJA
reaches a turbulent steady state rapidly. Instantaneous wavenumber spectra from
PIV measurements show a rapid convergence to the ensemble-averaged spectrum
when the jets are started from quiescence. If the jets begin firing in the optimal
pattern at t = 0, instantaneous spectra are statistically identical to each other for all



18 E. A. Variano and E. A. Cowen

–20 –15 –10 –5 0
0

2

4

6

u r
m

s (
cm

 s
–1

)

z (cm)

w
rm

s (
cm

 s
–1

)

Average size of 95% CI

–20 –15 –10 –5 0
0

2

4

6

Figure 8. Vertical profile of turbulent velocity fluctuation magnitudes beneath the free surface
(located at z = 0). Evident in this profile is the ‘homogeneous region’ in which turbulent
fluctuations decay monotonically, as well as the ‘surface-influenced region’ above z ≈ −12.5 cm
in which energy is transferred between horizontal and vertical fluctuations. Data from the
large-area (MCPIV) dataset are shown as � and �. Data from standard-size PIV images are
shown as ·, in a sparse subset for clarity. Near the surface, the same data are shown in their
entirety as � and �. The data shown as � and � are averaged over the horizontal region
x = [20, 60] cm and are used to find the power-law decay exponents discussed in § 4.8.

times greater than 3 s. The steady state is very repeatable, with mean and RMS values
varying by <5 % between measurements taken on successive days. This is in contrast
to the GST, in which McDougall (1979) and McKenna & McGillis (2004) find that
mean and fluctuating velocities are quite sensitive to initial conditions.

4.8. Vertical profiles of turbulent statistics

The homogeneous region in our tank lies between the jet merging region and the
surface-influenced region. The turbulence in this region decays monotonically, as
shown in figure 8. The extent of this region is relatively small (i.e. 5 cm) in our
apparatus, but could be extended by increasing the distance between the free surface
and the jet array. In this region that bears neither the influence of the jet array nor
the free surface, we measure the spatial decay of turbulent kinetic energy.

Grid turbulence commonly decays as a power law with distance from the grid, and
our data are consistent with this (Pope 2000). We measure the decay with respect
to Z, the distance from the RASJA (recall Z ≡ z + zc), and find that q2 ∼ Z−2.30,
urms ∼ Z−1.01, and wrms ∼ Z−1.42. These results are consistent with GSTs, as reported by
Hopfinger & Toly (1976). Far from the grid itself, Hopfinger & Toly obtain q2 ∼ Z−2,
urms ∼ Z−1, and wrms ∼ Z−1. Closer to the grid, however, they note that wrms decays
faster than Z−1, thus q2 decays faster than Z−2. The decay of q2 in wind tunnels is
more gradual than the decay in either GSTs or the RASJA, being between Z−1.15 and
Z−1.45 (Pope 2000).

The measured decay rate determines whether our apparatus (which is homogeneous
in x and y) can be considered homogeneous in z as well. When the spatial decay of
q2 is gradual, the flow can be considered effectively homogeneous in the direction of
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decay. Maxey (1987) quantifies this by introducing the decay length scale Ldecay =
q2/(dq2/dx) and the effective isotropy criterion LL/Ldecay � 1. The flow in our tank
falls short of this criterion: at Z = 60 cm (i.e. z = −20 cm) we find LL/Ldecay =0.3,
and the ratio does not drop below 0.1 until Z = 180 cm, a height not accessible in our
tank. Thus while the RASJA creates turbulence with excellent spatial homogeneity
in x and y, there is clear inhomogeneity in z close to the RASJA where turbulent
kinetic energy decays rapidly.

The integral length scale remains constant with z in the homogeneous region, to
within experimental uncertainty. This may be due to the limited spatial extent of the
homogeneous region. Both GSTs and wind tunnels exhibit length scales that grow
as the turbulence decays; in GSTs there is some evidence that it grows in such a
manner that it exactly balances the decaying q2, giving a ReT that is independent
of z. Because we do not find such a balance here, ReT decays with distance from
the source. Thus measurements can be made at a range of Reynolds numbers by
changing the location of the test section, as in a wind tunnel.

4.9. Turbulent statistics near the free surface

The effect of the free surface on turbulence is interesting in itself, especially given
that the air–water interface is of great importance to engineering and environmental
systems. The RASJA allows us to measure these dynamics at a higher Reynolds
number than previous studies – our apparatus displays ReT = 3250 compared to
ReT = 487 in the experiments of McKenna & McGillis (2004) and ReT = 360 in the
large-eddy simulations of Calmet & Magnaudet (2003). The profiles we measure,
given in figure 8, show the qualitative features predicted by Hunt & Graham (1978)
using rapid distortion theory, namely the redistribution of energy from vertical to
horizontal fluctuations. This is expected to occur within one integral length scale of
the surface (Calmet & Magnaudet 2003; Hunt & Graham 1978). We observe exactly
this, noting that for z � −7.5 cm, wrms declines more rapidly than its previous (free)
decay, and urms shows a corresponding increase. We also note that some effects are
visible at distances up to nearly 2LL (z = −15 cm).

Hunt & Graham (1978) predict wrms ∝ −z1/3 by using inviscid theory. However, in
reality there will be a small viscous sublayer, whose thickness Brumley & Jirka (1987)
estimate from scaling arguments as δv ≈ 2LLRe

−1/2
T , using values of LL and ReT far

from the surface. Calmet & Magnaudet (2003) confirm the accuracy of this estimate,
which in our apparatus gives δv ≈ 0.26 cm. This thickness is slightly smaller than the
shallowest depth captured by our PIV measurements, namely z = −0.42 cm. Including
consideration of the viscous sublayer in the Hunt & Graham prediction yields:

wrms = − β (1/2)ε(1/3)(z + δv)
1/3 (4.4)

where theory predicts β ≈ 1.8 (Calmet & Magnaudet 2003, citing Hunt 1984 and
Magnaudet 2003). Calmet & Magnaudet find that this relation holds between z ≈ −δv

and z ≈ −0.7LL, and measure β ≈ 2.0. We find that this relation holds for depths as
great as z = − 1LL, and measure β ≈ 1.5.

Nearer to the free surface (z > −1 cm) we observe a sudden decay of urms and
therefore q2 (see figure 9). Comparison with the simulations of Shen, Yue &
Triantafyllou (2004, especially their figure 4) indicates that this is probably due to
the presence of a surfactant layer on our air–water interface. Such a layer is common
in the laboratory unless specific steps are taken to reduce it, and is difficult to
eliminate entirely. However, because all natural water bodies have naturally occurring
surfactant layers (Frew et al. 2004), measurements of turbulence interacting with
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Figure 9. Vertical profile of turbulent kinetic energy beneath the free surface (located at
z = 0). Data are presented in the same manner as figure 8.

a surfactant-covered interface do have direct scientific relevance. The presence of
surfactant in our apparatus probably explains the other key difference between our
dataset and the behaviour described by Calmet & Magnaudet (2004) and Hunt &
Graham (1978). While they report a local minimum in q2 at z ≈ − LL/4, we see no
such feature. This can be understood by considering that Shen et al. (2004) find a
local minimum under a clean free surface at the expected location, but find no such
feature when a surfactant is present.

5. Exploration of the jet driving patterns
We explore a variety of jet driving patterns, taking advantage of our high degree

of spatial and temporal control. Such an exploration is intended to provide an
understanding of which aspects of the random forcing contribute most to creating
homogeneous turbulence and why. This should allow future researchers to plan
successful variations on our implementation of the RASJA. Importantly, we find that
only a small subset of the possible driving patterns provide small mean flow, high
Reynolds number, and spatial homogeneity.

Every driving pattern forces the tank through a series of ‘temporary states’. Each
temporary state corresponds to a particular set of jets firing, and has an average
duration τs which is long compared to the Kolmogorov time scale but short compared
to the convergence time over which statistics are calculated. We refer to the flow
properties in each temporary state as ‘temporary’ quantities. The performance of
each driving pattern is judged based on the following flow properties: mean flow
magnitude, free-surface motions, spectral shape, and x, y-planar homogeneity.

The dominant characteristics of a driving pattern are: the number of jets firing
at a given instant (§ 5.1); whether the pattern is deterministic or random (§ 5.2); the
mean duration for which a jet fires (§ 5.3); and the shape of the distribution of jet
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Figure 10. The magnitude of turbulent velocity fluctuations as a function of momentum
source fraction (the average number of jets which are driving the flow at any instant). There
is a peak value near 12.5% (shown by the dashed line) at which the jets insert momentum
such that the temporary mean velocity gradients yield maximum turbulent kinetic energy
production.

firing durations (§ 5.4). The pattern which we find gives optimal performance is the
‘sunbathing algorithm’ described in § 5.4.2.

5.1. Source and sink fraction

We define the source fraction, denoted φ, as the average fraction of jets that are firing
at a given time. The related quantity (1 − φ) is the sink fraction. These are named
as such because each firing jet represents a momentum source (upwards from the
RASJA into the tank) while each resting jet allows downward momentum flux and
thus represents a momentum sink. Considering an analogy to grid turbulence, the
source fraction φ is similar to the grid porosity and the sink fraction (1 − φ) is similar
to the grid solidity.

When using a grid to create approximately homogeneous and isotropic turbulence,
the grid solidity is a key design parameter, for it sets the magnitude and distribution
of shear. Similarly, the source fraction of the RASJA has a large impact on the
turbulence in our apparatus. We find that there is an optimal source fraction, φoptimal ,
above which additional momentum input actually reduces turbulent kinetic energy,
as shown in figure 10. This behaviour is surprising, in that turning on more jets can
actually weaken the turbulence!

We offer an explanation of this surprising behaviour by considering the production
of turbulent kinetic energy:

Pij = − 〈uiuj 〉1

2

(
∂〈Ui〉
∂xj

+
∂〈Uj 〉
∂xi

)
. (5.1)

While the mean shear in our apparatus is approximately zero (because 〈U〉 ≈ 0),
each temporary tank state has a non-zero mean shear and thus non-zero production.
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Drive M∗ 95 % CI 95 % CI

Random, φ = 0.25 0.0215 0.0062 0.0267
Deterministic, φ = 0.25 0.0732 0.0437 0.0864

Random, φ = 0.50 0.1500 0.0618 0.1101
Deterministic, φ = 0.50 0.3738 0.3173 0.4220

Random, φ = 0.75 0.0888 0.0603 0.0758
Deterministic, φ = 0.75 0.3302 0.1997 0.2903

All pumps on, φ = 1.00 0.2358 0.1082 0.1761

Table 4. Mean flow energy ratio M∗ for random and deterministic drives.

The optimal source fraction is that which maximizes the average magnitude of
this temporary mean shear. This implies that for source fractions above φoptimal , the
average magnitude of the temporary mean shear decreases with increasing momentum
input. In contrast, for source fractions below φoptimal , the average magnitude of the
temporary mean shear increases with increasing momentum input.

As seen in figure 10, φoptimal is very close to 12.5 % for random forcing using the
sunbathing algorithm (the pattern discussed in § 4 and defined in § 5.4.2). The fact
that φoptimal exists, and is lower than might be expected a priori, could have strong
implications for the design of a variety of mixing tanks. Whether the tank is stirred
with impellers, synthetic jets, or other mechanisms, more stirring does not necessarily
imply better mixing. Rather, additional elements may only add to the strength of the
secondary circulation and not to the turbulence itself.

5.2. Random versus deterministic forcing

We wish to understand whether turbulence with low mean flow is better achieved
when it is created by a truly random forcing, or whether a deterministic forcing that
varies in space and time will perform just as well. To do this, we compare our optimal
random driving pattern to a deterministic pattern that mimics it as closely as possible.
Both are homogeneous in space on average and have the same mean jet duration
(μon =3 s, see § 5.3).

The results in table 4 show that random forcing consistently achieves a lower mean
flow energy ratio M∗ than the corresponding deterministic forcings. At lower values
of φ this is because randomly forced flows have larger q2 values than flows with
deterministic forcing, while at higher values of φ this is because random forcing
produces weaker mean flows. More details, as well as other supporting experiments,
can be found in Variano (2007). Experiments by Mydlarski & Warhaft (1996) in an
active-grid wind tunnel support the dominance of random over deterministic forcings.
One possible explanation for this is that random forcings include states that ‘frustrate’
any given mean flow pattern, while deterministic forcings will have certain mean flow
modes that can be sustained indefinitely.

5.3. Setting the forcing time scale

We now determine the optimal time scale with which to drive the RASJA. This time
scale is set by the source fraction (φ) and the average duration for which a given
jet fires, denoted μon . These set the average duration of each temporary tank state
(τs ≡ φμon), as well as the average time for which a jet remains off (μoff = (1/φ−1)μon ).

Our measurements show that the fluctuating velocity magnitude urms increases
strongly with μon . To understand this, we must return to a discussion begun in § 4.1.
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That is, urms measures the variance due to both turbulence and the random tank
forcing itself. We must separate these effects before determining the optimal value for
μon .

5.3.1. Separating forced motions from turbulent motions

Consider the decomposition U = U + U forced + U turbulent, where the fluctuating
velocity u′ = U forced + U turbulent. The term U turbulent represents the velocity fluctuations
due to turbulence, which is an indirect effect of the tank forcing. The term U forced

represents the temporary mean velocities that are a direct effect of the time-varying
tank forcing. These temporary mean velocities are not turbulence, but rather mimic it.
This is similar to the thought experiment of an oscillating laminar flow – while such a
flow has a non-zero velocity variance, this variance clearly should not be interpreted
as a turbulence intensity.

We can determine the relative contributions of U turbulent and U forced to urms by
varying μon . The separation is subtle, for both components should increase with μon .
The forced fluctuating velocity U forced should increase with μon because the duration
of each tank state does so as well, allowing each temporary mean flow to become
fully developed. The turbulent fluctuating velocity U turbulent should increase with μon

because more developed mean flows result in a longer-lived mean gradient, allowing
more time for the strain and vorticity fields to align for increased turbulent production.

Since both fluctuating components increase with μon , the key to separating their
effects is found in spectral space. We compare the Eulerian frequency spectra of
u′ measured over a wide range of μon values, looking for deviations from the
theoretically predicted shape that would indicate velocity fluctuations from sources
other than turbulence. Of particular use in this comparison is the limiting case of
μon = ∞ in which a single random tank state remains on for the duration of the
measurement, without changing. In this case U forced = 0, i.e. all variance is due to
turbulence, though the mean flow will be quite strong. Two such cases are measured,
as well as cases with μon = 3, 10, and 30 s.

These spectra, shown in figure 11, show that for smaller values of μon, (i.e. 3 and
10 s), spectra are identical to the pure turbulent spectra of μon = ∞. All of these
match the shape of the theoretically expected spectra for homogeneous and isotropic
turbulence (Tennekes 1975). In contrast, the case of μon = 30 s shows a broad energy
peak at low frequencies (notably lower than 1/τs). This peak is quite broad, and thus
difficult to separate from the low-frequency plateau expected in Eulerian frequecy
spectra of turbulence. We identify it by the ‘dip’ near ω = 0.5 rad s−1 and by the
decrease at the lowest frequencies (where we expect a plateau). We hypothesize that
this low-frequency peak is the spectral signature of U forced. This is supported by the
observation that when we normalize the μon = 30 spectrum by any of the others,
there is increased energy at low frequencies, but not in the inertial subrange. Thus the
amplified low-frequency motions apparently do not contribute to the energy cascade.

This analysis implies that increasing μon past a certain point does not increase
the turbulent production and U turbulent, but rather increases U forced, the magnitude
of the fluctuations directly caused by the tank forcing. This transition appears to
be somewhere between μon =10 and 30 s. In this paper, to make sure that U turbulent

is dominant, we minimize any possible effect of U forced by using the smallest μon

available in our tank. If this conservative decision were relaxed, we could achieve
larger Reynolds numbers than those reported in § 4.6. A practical lower limit for μon

is set by the fact that the pumps driving each jet take ≈ 1 s to reach full flow rate.
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Figure 11. Eulerian frequency spectra of w′ for five values of μon . Comparison of these is
intended to elucidate what portion of the velocity fluctuations is due to turbulent eddies, and
what portion is due to the changing temporary mean flow that varies with the tank state. The
spectrum for μon = 30 s is shown properly normalized (so that its integral from ω = −∞ to ∞
equals the velocity variance), while all others are shifted downwards by a multiple of 3 decades
for ease of comparison. The spectra with μon = ∞ are driven by two different realizations of a
pattern in which synthetic jets are arranged randomly in space and remain steady for all time,
thus all variance is due purely to turbulence. Arrows indicate the bounds of the broad, shallow
peak in the μon = 30 spectrum which differs from the shape of these purely turbulent spectra.
Each of the five spectra are shown as a composite of two curves, the first shown by symbols
and the second by a line. The symbols show the spectrum as calculated from a single long
(� 90 minute) velocity record, and is shown only for low frequencies. The line is an ensemble
average of many spectra obtained by breaking the long record into 5 minute subrecords. The
ensemble-averaged curve is less noisy, while the symbols allow insight into the lower frequency
components.

We choose μon = 3 s, which given our value of φoptimal = 12.5 % yields μoff = 21 s and
an average temporary tank state duration of τs = 0.375 s.

5.4. Distribution of jet firing durations

Having chosen the mean duration for which jets remain on and off (μon and μoff),
we must now choose the shape of the distributions about these mean values. The
distribution of jet firing durations (‘on times’) is denoted fon, and the distribution of
jet resting durations (‘off times’) is denoted foff. We investigate the cases of Poisson,
normal, and constrained normal distributions. The optimal performance is acheived
when both fon and foff are normal distributions, which we call the ‘sunbathing
algorithm’.

5.4.1. Poisson distribution – the ‘coin-toss’ algorithm

The first distribution used was the simplest one that could give random behaviour
and adjustable source fraction. This is a Poisson distribution of jet firing durations,
and is obtained via an algorithm which sets each jet’s state at every time step. Time
steps are separated by tu ≡ μon/2φ, and at each time step, a given jet turns on with
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Figure 12. Schematic of the ‘sunbathing algorithm’, which is the optimal jet driving pattern.
In this, each jet is independent of the others and fires randomly for a duration chosen from
the normal distribution fon and then rests for a duration chosen from the normal distribution
foff. The flow is quite sensitive to the mean firing duration μon and the momentum source
fraction φ = μon/μoff, but insensitive to σon and σoff.

probability φ. When φ = 0.5 this is equivalent to each jet tossing a coin every time
step to determine whether it will be on or off. The width of this distribution is quite
narrow and cannot be controlled independently of μon and φ. Performance was poor,
showing weak turbulence, high mean flow, and sizable surface waves.

5.4.2. Normal distribution – the ‘sunbathing algorithm’

This is the pattern we have found to be the best, performing well at a wide range
of conditions, and constituting the ‘optimal pattern’ for our facility when φ =0.125
and μon =3 s. An example of the pattern is shown schematically in figure 12.

In this algorithm, each time a jet turns on, the jet chooses a duration don from the
normally distributed fon (centred on μon with variance σ 2

on). The jet remains on for
this duration, after which it turns off for a duration doff (chosen from the normally
distributed foff). After doff has elapsed, the jet turns back on, choosing a new value
of don, and so forth. Each jet independently follows the same procedure, continuously
choosing its own don and doff values from the global distributions fon and foff. We
consider the analogy of a sunbather at the beach – after some time in the hot sun,
they must go for a swim, after some time cooling off in the ocean they return to
sunbathing, etc. Both activities have variable durations, centred on some mean. We
use a variety of different initial conditions (i.e. the initial state of each jet) and the
flow shows no sensitivity to these. This can be seen in figure 4, in which results from
many datasets, each with a different initial condition, are seen to overlap.

We find very little sensitivity of the flow to the values of σon and σoff. We
set σon/μon = σoff/μoff ≡ σ ∗ and measure values of σ ∗ ∈ { 1

6
, 1

3
, 0}. Single-point

measurements show that urms and U are statistically identical at the 95 % confidence
level regardless of σ ∗ at both φ = 25 and 50. Given this insensitivity, we choose to set
σ ∗ =1/3. This gives as broad a distribution as possible under the constraint that all
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values doff and don must be positive, noting that if their distributions extend far below
zero significant clipping will occur.

It is interesting to note that the case of σ ∗ = 0 is equivalent to a discretized delta-
function distribution. That is, each pump turns on for exactly μon and then stays off
for exactly μoff. This pattern is more deterministic than the others, in that the relative
phases of each pump’s sequence are fixed. Despite this additional determinism, tank
performance was not significantly affected.

5.4.3. Constrained normal distribution – constant-momentum input

The patterns discussed above allow the number of jets firing at any instant to
be different from the average number of jets (64φ). Such variability means that
instantaneous total momentum input to the tank is not constant. This serves as
another manner in which the tank’s forcing is randomized. However, to ascertain
the effect of this additional randomization, we test an algorithm that provides a
constant-momentum input. In this variant of the sunbathing algorithm, the number
of jets firing remains fixed. Eight jets are firing initially, and whenever one reaches
the end of its chosen duration (chosen from a normally distributed fon), it is replaced
by one of the jets that is currently off. Jets remain off until chosen to replace a jet
that has just completed its firing duration. The effect of this constraint is to make foff

completely dependent on the form of fon.
Under this constant-momentum forcing, tank performance was identical at the

95 % confidence level to the optimal pattern, with respect to homogeneity, q2, and
M∗. Thus we conclude that variance in the global momentum input does not greatly
affect tank performance.

5.5. Jet firing direction

The fact that the jets point upwards may introduce the skewness we observe in W

as well as contribute to the anisotropy between W and U, V . Because the former is
considered the primary cause for the non-zero mean flow, we attempt to remove this
effect by removing any spatial preference in the forcing. We do this by reorienting the
jets so that they point sideways. To maintain homogeneity, we orient the sideways
jets so that groups of four neighbouring jets collide at one of 16 grid points. This
grid obeys reflective symmetry with the tank walls, and we only fire the jets in these
groups of four. Thus we have a 4 × 4 grid of points at which momentum is injected
into the flow with minimal directional orientation.

We drive these 16 momentum injection points according to the sunbathing
algorithm, with source fractions φ ∈ {0.125, 0.25, 0.75, 1}. These configurations
perform poorly compared to upward facing jets, showing nearly twice the skewness,
5–10 times as much mean flow, and about half the urms (Variano 2007).

6. Effect of mean flow on turbulent scalar transport
Because every turbulent stirred tank has some non-zero mean flow, we wish to

determine whether the effects of this mean flow are large enough to demand continued
attention. As a case study we investigate turbulent scalar transport, a phenomenon
that is commonly studied in stirred tanks. Turbulent scalar transport can be measured
in stirred tanks by assuming that advective transport by mean flow is zero. If this is
true, then the time rates of change of scalars are due entirely to turbulent diffusive
transport. However, if some mean flow is present, we expect that over long time
periods even a weak mean flow can overwhelm the effects of turbulent diffusion. This



Random-jet-stirred turbulence tank 27

can be seen by describing scalar transport with the advection–diffusion equation and
noting that advective transport scales as t while turbulent diffusive transport scales as
t1/2. Thus even a weak mean flow can have a non-negligible effect on measurements
of turbulent transport.

Conveniently, the spatial control afforded by the RASJA’s forcing elements allows
us to separate the effects of mean flow from the effects of turbulent diffusion. We can
do this by running a series of transport experiments in which we force mean flows of
varying strength by giving jets at certain locations a higher probability of firing. By
doing this, we hope to determine the degree to which mean flow may have affected
the values currently in the literature. We demonstrate this technique by measuring the
bulk O2 transfer velocity across the air–water interface. Dissolved O2 is measured with
a Clark type sensor (YSI 5331). This probe is located 2 cm beneath the free surface,
at x = 5, y = 5, z = −2 cm, and the stirring necessary for accurate readings is simply
provided by the RASJA. The tank is initially purged of dissolved oxygen by adding
the reagent Na2SO3 (0.570 micromolar) and the catalyst CoCl2 (3 micromolar). SO3

is a strong reductant that reacts with all of the dissolved oxygen in the tank to
form SO−2

4 . The tank then reaerates from interfacial transfer of atmospheric O2 (at
atmospheric concentration and pressure) across the free surface, and this transfer is
enhanced by both the turbulence and the mean flow. The mass transfer velocity k is
found by measuring concentration time series (C(t)) and fitting for k in the model for
flux given by:

Flux =
∀
A

dCbulk

dt
= k�C, (6.1)

where A is the tank surface area, ∀ is the tank volume, and �C ≡ Csurf − Cbulk. In this
last definition, Csurf = Csat which is the saturation concentration of dissolved oxygen
(determined from Henry’s law) and Cbulk is the dissolved oxygen concentration far
from the air–water interface.

To vary M systematically, we use spatially dependent source fractions to give
the jets near the tank walls a greater likelihood of firing. The 36 inner jets (those
not bordering a tank wall) have φinner = 12.5 % while the 28 outer jets have φouter ∈
{12.5, 25, 50, 75} %. The additional forcing by outer jets produces a tank-scale toroidal
mean flow, which for the strongest forcing has a velocity nearly equal to the turbulent
fluctuating velocity. For each of these four cases we measure the gas transfer velocity
k. The values of k we obtain agree with those reported in McKenna & McGillis
(2004), which we extrapolate to our larger Reynolds number. We do this using the
‘dirty’ case from their figure 4, which is appropriate because our free surface is subject
to a non-negligible surfactant load.

Our results are shown in figure 13, which demonstrates that there is a 40 %
increase in k as M∗ increases from 0 to 1 (M1 shows nearly identical behaviour).
This increase cannot be attributed to increased turbulent kinetic energy at higher M∗

values, because we measure that urms decreases monotonically (albeit weakly) with
increasing M∗. Furthermore, since surfactants impede the gas transfer process, the
effect of mean flow on measurements would probably be even stronger under a clean
surface.

We conclude that studies currently in the literature probably report values of
turbulent diffusivities that are too high. For the case of turbulent interfacial fluxes
with a surfactant layer, we expect that values are typically overestimated by 1 %
to 20 % (corresponding to mean flow strengths M1 between 0.1 and 0.5). The most
common value found in the literature is M1 ≈ 0.25, which corresponds to a roughly
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Figure 13. Gas transfer velocity k (cm h−1) as a function of the mean flow intensity, showing
the sensitivity of transport processes to mean flow in stirred tanks. Two measures of mean flow
strength are presented: (a) the spatially averaged energy ratio M∗, averaged over the region
x ∈ [40, 80], y = 40, z ∈ [−20, −15] cm; (b) the single-point single-component ratio of mean
to fluctuating velocity, as typically reported in the literature. Boxes show the two-dimensional
95% confidence intervals.

7 % overestimate of k (Variano et al. 2004). The threshold below which mean flow
can be considered negligible seems to be M1 = M∗ = 0.05, below which the curves k

vs. M seem quite flat, and values of k are statistically identical.

7. Eulerian frequency spectrum model
Here we use the turbulent flow generated by the RASJA to contribute to Tennekes’

(1975) model of the Eulerian frequency spectrum. This is useful because an improved
measurement of model constants would allow researchers to calculate dissipation rates
by fitting the model to Eulerian spectra calculated from single-point velocity time
series, even when Taylor’s frozen turbulence does not hold. This could be especially
useful when analysing field measurements of environmental flows.

The RASJA is an excellent tool for studying this model because the mean flow
is already absent from measurements (wind-tunnel studies of this model would
have to translate measurement devices at the mean flow velocity) and because the
high Reynolds number allows a sizable power-law scaling region. Because Tennekes’
model is based on homogeneous and isotropic turbulence, an even better apparatus
for these measurements would be a tank with symmetric forcing. Nonetheless, the
inhomogeneity seen in our apparatus makes our measurements interesting because
they more closely resemble the environmental flows where this model may be applied.

Tennekes (1975) performs an analysis of the Eulerian frequency spectrum of
velocities in homogeneous isotropic turbulence, and predicts that it should exhibit an
inertial–advective subrange of the form

E(ω) = B0ε
2/3(

√
3U)2/3ω−5/3. (7.1)
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Figure 14. Compensated Eulerian frequency spectrum, computed from ADV measurements
of the horizontal velocity fluctuation (u′) time series (5.5 h of data collected at 50 Hz, ensemble
averaged over 40 s subrecords). The flat region represents the inertial–advective subrange from
which we can fit to Tennekes’ model, which offers the possibility of calculating dissipation
from single-point velocity time series. No data are shown past the Nyquist frequency, rather
the upward trend is the noise tail amplified by compensation.

This model includes the effect of small eddies being advected past the Eulerian
measurement point by larger eddies, which gives rise to fluctuations of higher
frequency than would be observed in a Lagrangian frame. Tennekes suggests that B0

is of order 1, and Fung et al. (1992) calculate 0.8 using further assumptions about the
form of the turbulent field. Experimental measurement of this constant is difficult,
since it requires a precise measurement of the dissipation rate and an absence of mean
flow. Kit, Fernando & Brown (1995) report measurements in a GST at Rλ ∈ [70, 100],
confirming the form E(ω) = B1ε

2/3u2/3
rmsω

−5/3 (in which the constant is slightly different,

the factor of
√

3 having been absorbed into the constant and only the surface-normal
fluctuating velocity used). They report B1 ∈ [0.7, 0.9], which is in contrast to earlier
work suggesting B ≈ 8 (DeSilva & Fernando 1994).

The Eulerian frequency spectrum we measure is shown in figure 14 (that for vertical
velocity fluctuations is shown in non-compensated form in figure 11). This agrees well
with Tennekes’ model, showing the power-law scaling region. Interestingly, the slope
of this region appears to be exactly −5/3, while the slopes of the wavenumber spectra
in figure 7 seem to be slightly steeper than this. From figure 14 we find B0 = 0.23
with a 95 % CI of [0.16, 0.30] and B1 = 0.35 with a 95 % CI of [0.24, 0.46]. The
uncertainty on this measurement is dominated by the uncertainty in ε, for which the
percent uncertainty is three times larger than that for E(ω) and ten times larger than
that for urms. As in § 4.5, our normalization of the spectrum assumes the integral over
ω ∈ [−∞, ∞] equals the velocity variance.

Our measured value of the constant in Tennekes’ model of the Eulerian frequency
spectrum does not resolve the disagreement between previously suggested values.
While the constant is apparently non-trivial to measure, we encourage further study
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because, if complete, this model could prove to be as useful as Kolmogorov’s model
of the wavenumber spectrum.

8. Conclusions
No existing device can provide a turbulent flow featuring high-Reynolds-number,

large-scale isotropy, and homogeneity over a region much larger than the integral
length scale. Facilities providing approximations to this have improved over the past
decades, and have proven quite powerful for exploring turbulence, once the limitations
of the facilities have been considered. In this study we show that spatiotemporal
randomization can greatly improve performance of these systems (whether they
employ unidirectional or symmetric forcing) and identify the most important aspects
of the random drive pattern.

We find that the flow is quite sensitive to the details of the spatiotemporal forcing
pattern. Tank performance is best when forcing is random, and can be greatly
improved by setting the average number of firing jets so as to balance the tradeoff
between momentum input and turbulent production by local shear. Also important
is the time scale of forcing, which should be set to maximize turbulent fluctuations
while avoiding fluctuations forced by the random pattern itself. We demonstrate
how to monitor this via Eulerian frequency spectra. We find that the shape of the
distribution of jet firing durations is a strong driver of tank performance, a normal
distribution performing much better than a Poisson distribution. Our measurements
show that momentum input need not remain constant for the tank to perform well,
and that vertical jets (which insert momentum in the asymmetric direction) give better
performance than do horizontally firing colliding jets. These insights should help with
both the design of future devices and the interpretation of measurements made in
existing randomly forced systems.

Measurements using the RASJA in the optimal configuration show that the flow
has a high Reynolds number and is homogeneous and isotropic in planes parallel
to the free surface (x, y). The statistical convergence time is long (> 20 minutes for
the most basic velocity statistics) but the approach to steady-state turbulence is rapid
(≈ 3 seconds). That is, the RASJA develops the desired flow almost instantly, but one
must measure this flow for some time to accurately characterize it. We have identified
that x, y planar homogeneity is achieved for Z > 6 jet spacings (60 cm), after which
the velocity fluctuations and Reynolds number undergo a power-law decay with Z.
This decay results in a non-zero skewness in W . We find an integral length scale
on the order of the jet spacing, and note that boundaries are felt over roughly 2
integral length scales, an important consideration when choosing tank width. We
consider one boundary in detail, namely the air–water interface, where we measure
its effect on subsurface turbulence at a higher Reynolds number than any previous
study. We find good agreement with existing theory and computer simulations.

We have calculated dissipation in three ways, which agree, and support the use
of the structure function method as effective and robust. Using this result, we have
confirmed the form of the inertial–advective subrange of the Eulerian frequency
spectrum predicted by Tennekes (1975) and measured the unknown constant in his
model.

Finally, by intentionally forcing mean flows we find there is a statistically significant
effect on the measured interfacial gas transfer velocity for mean flows greater than
≈ 5 % of the turbulent fluctuating velocity. Many previous studies of gas transfer
have been performed in facilities exceeding this threshold. This emphasizes the need to
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quantify and report the effects of mean flows in future studies of turbulent transport.
We encourage future researchers to use the robust metric of mean flow strength, M∗,
presented in § 4.2.
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